
Visual Basic 6 Support Information

Vaunix Technology Corporation May 23, 2012

These notes apply to calling the Lab Brick LMS Frequency Synthesizer DLL from VB6.

1) VB6 can only call out to external dlls which use the old Win32 API calling conventions (what is
normally declared as __stdcall in C). Newer DLLs, like the Lab Brick DLL use a newer calling
convention which is easier to work with in the more recent programming tools. To solve this issue
a special version of the LMS Frequency Synthesizer DLL has been built that uses the older
calling convention so that the user can call it from VB6. A copy of the DLL, and its related .lib file
(which probably isn’t needed but is included as a reference) are attached.

2) VB6 requires that the user declare external functions before they are called. While this topic is
covered in some detail in the VB6 documentation, it would be helpful to have an example of what
the declarations should look like for your program. Therefore, a set of declarations for the
functions in the Lab Brick LMS Frequency Synthesizer DLL has been created and is included in
an attached file.

3) The general approach would be to include the declarations in the user source file, and then call
the DLL to perform the desired functions. Use the C code example provided with the original DLL
as a guide for what needs to be done. Basically, the user program needs to allocate an array of
Longs to hold the device IDs which the DLL returns to the program. Then the program picks the
device ID for the LMS Frequency Synthesizer to be controlled, opens it, and issues commands.
Remember to close it when finished.

4) Neither the special version of the DLL nor the declarations have been tested under VB6. The
DLL has been tested from a C program, and the format of its exported functions has been
carefully inspected. The declarations can only really be tested under VB6. The simple functions
that pass Longs should be fine, since the declarations are straightforward. The declaration, and
the argument passing for the fnLDA_GetDevInfo function are tricky. Since C programs refer to
arrays by the address of the first element of the array, the user need to pass the first element of
the array you create in your VB6 program. Note that in this case you don’t want to pass the value
of the array element, but its address – hence the argument does not have the By Value keyword.
 You should check that this is correct – it seems so from the documentation, but it is something
the user should double check. Similarly, the fnLDA_GetModelName function returns a string, and
that can be tricky in VB6 – so if you need to use that function you will have to make sure the
argument passing works correctly.

All of these cases are described in the Microsoft documentation, searching the MSDN
documentation should let you find whatever you need.

Finally, note that the C int variable is actually a Long in VB6 – a VB6 int is a 16 bit integer, while
ints in the C compiler used to create the DLL are 32 bits.

Vaunix Technology Corporation

